Aluminum and it's alloys **Properties and Applications** # CONTENTS OF THE PRESENTATION - 1) Properties of Al - 2) Application of Al - 3) Limitations of Al (pure) - 4) Alloys of Al - 5) Properties of Al alloys - 6) Application of Al alloys - 7) Application of Al alloys in Oil and Gas Sector - 8) Classification of Al alloys The appearance of Aluminum ranges from ranging from silvery to dull gray (depending on the surface roughness) ## 1) Properties of Aluminum - 3rd most abundant element on earth (after oxygen and silicon) with 8% by weight. - Aluminum and its alloys are characterized by a relatively low density (2.7 g/cm³ as compared to 7.9 g/cm³ for steel) - It has FCC structure. - High electrical & thermal conductivity. - Aluminum is nonmagnetic and non sparking. - It is also insoluble in alcohol & water. - Resistance to corrosion: Corrosion resistance can be excellent due to a thin surface layer of aluminum oxide that forms when the metal is exposed to air, effectively preventing further oxidation. (phenomenon of passivation) - It is easy to cast (low m.p.). Surface of an aluminum bar # 2) Applications of Aluminum - Since it is **ductile**, it can be used to protect pure metals by Al foil. - ➤ As it is **good conductor of electricity & cheap** so it is used for making electrical wires. - Aluminum has no aroma, hence it is widely used in food packing and cooking pots. - It is used in mirrors and other decorative architectural components. # However the application of pure aluminum is very rare as compared to that of it's alloys. Why is that so ????? #### 3) Limitations - The chief limitation of aluminum is its low melting temperature (660 C), which restricts the maximum temperature at which it can be used. - Moreover it is very soft, which restricts their application in automobile and aircrafts (where lightweight and stronger materials are required). # 4) Alloys of Aluminum The typical alloying elements of aluminum are copper, magnesium, manganese and zinc. # Alloys of Al and it's composition | Alloy Name | Al (in %) | Cu (in %) | Mn (in %) | Mg (in %) | Zn (in %) | |------------|-----------|-----------|-----------|-----------|-----------| | Duralumin | 95 | 4 | 0.5 | 0.5 | - | | Magnalumin | 70-90 | - | - | 30.10 | - | | Electron | 9-10 | - | 0.5 | 87-86 | 3.5 | ## 5) Properties of Al alloys - Aluminum and its alloys are characterized by a relatively low density (2.7 g/cm³ as compared to 7.9 g/cm³ for steel) - Having almost equal strength as that of steel. - Resistance to corrosion in some common environments, including the ambient atmosphere. - Many of these alloys are easily formed by virtue of high ductility. - It's tensile strength can be raised by heat treatment without affecting it's ductility. - High electrical and thermal conductivities - They have excellent fatigue and lowtemperature toughness properties. ## 6) Application of Al alloys - Aluminum alloys are widely used for aeronautical applications because of high strength weight ratio. - For automobiles for reducing weight of the vehicle thus reducing fuel consumption. - For applications as electrical conductors including overhead transmission lines. - House hold and consumer items such as utensils. - Used as sacrificial anode. - Marine applications. For surface transport such as fittings in railway coaches and buses. - Aluminum is also used in making windows, doors and roofs of factories. - Also in Sporting Equipments. ## 7) Application in Oil & Gas sector - Upstream: - (a) Material for drill pipe. - (b) Full aluminum or mixed aluminum/steel are also used in drill strings. - Midstream & Downstream: - (a) For storage and transportation of CO2, air and oxygen. Aluminum Alloy Drill Pipe is available in 3-1/2" and 5-1/2" sizes # 8) Classification of Al Aluminum alloys can be can be classified - Wrought alloys - Cast alloys Each of these alloys can be further classified - (a) Non heat treatable alloys - (b) Heat treatable alloys Table 11.7 Compositions, Mechanical Properties, and Typical Applications for Several Common Aluminum Alloys | Aluminum
Association
Number | UNS
Number | Composition
(wt%) ^a | Condition
(Temper
Designation) | Mechanical Properties | | | | |-----------------------------------|---------------|---|--|------------------------------------|----------------------------------|---|---| | | | | | Tensile
Strength
[MPu (ksi)] | Yield
Strength
[MPa (ksi)] | Ductility
[%EL in
50 mm
(2 in.)] | Typical
Applications/
Characteristics | | | | | Wrought, Non | heat-Treatabl | e Alloys | | | | 1100 | A91100 | 0.12 Cu | Annealed (O) | 90
(13) | 35
(5) | 35-45 | Food/chemical
handling and
storage equipment
heat exchangers,
light reflectors | | 3003 | A93003 | 0.12 Cu,
1.2 Mn,
0.1 Zn | Annealed (O) | 110
(16) | 40
(6) | 30-40 | Cooking utensils,
pressure vessels
and piping | | 5052 | A95052 | 2.5 Mg,
0.25 Cr | Strain
hardened
(H32) | 230
(33) | 195
(28) | 12-18 | Aircraft fuel and oil
lines, fuel tanks,
appliances, rivets,
and wire | | | | | Wrought, He | eat-Treatable | Alloys | | \$5000 C 9500 C 554 | | 2024 | A92024 | 4.4 Cu,
1.5 Mg,
0.6 Mn | Heat treated
(T4) | 470
(68) | 325
(47) | 20 | Aircraft structures,
rivets, truck
wheels, screw
machine products | | 6061 | A96061 | 1.0 Mg,
0.6 Si,
0.30 Cu,
0.20 Cr | Heat treated
(T4) | 240
(35) | 145
(21) | 22-25 | Trucks, canoes,
railroad cars,
furniture, pipeline | | 7075 | A97075 | 5.6 Zn,
2.5 Mg,
1.6 Cu,
0.23 Cr | Heat treated
(T6) | 570
(83) | 505
(73) | 11 | Aircraft structural
parts and other
highly stressed
applications | | | | | Cast, Hea | t-Treatable Al | loys | | HOLDER OF THE PARTY T | | 295.0 | A02950 | 4.5 Cu,
1.1 Si | Heat treated
(T4) | 221
(32) | 110
(16) | 8.5 | Flywheel and
rear-axle housings,
bus and aircraft
wheels, crankcases | | 356,0 | A03560 | 7.0 Si,
0.3 Mg | Heat treated
(T6) | 228
(33) | 164
(24) | 3.5 | Aircraft pump parts,
automotive
transmission cases
water-cooled
cylinder blocks | | 2090 | | 2.7 Cu. | Heat treated. | n-Lithium Al
455 | 455 | 5 | Aircraft structures | | 2090 | | 0.25 Mg,
2.25 Li,
0.12 Zr | cold worked
(T83) | | (66) | 3 | and cryogenic
tankage structures | | 8090 | = | 1.3 Cu,
0.95 Mg,
2.0 Li,
0.1 Zr | Heat treated,
cold worked
(T651) | 465
(67) | 360
(52) | - | Aircraft structures
that must be
highly damage
tolerant | ^a The balance of the composition is aluminum. Source: Adapted from ASM Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 1990. Reprinted by permission of ASM International, Materials Park, OH.